
GDGraph 2.1 Reference

This document provides a reference of the use of GDGraph 2.1. To get
yourself started, first you'll need (obviously) PHP 4.3, or higher, and GD 2,
or higher; although it hasn't been tested on other systems, it probably will
work with PHP 3 and up, but GD 2 is needed.

The way this class works (for now, comments are welcome), is that it
will return an online PNG image to your browser after any of it's functions
(bar_graph , pie_graph or line_graph) are called upon, including it's header
(so you don't need to call the PHP header function before any of them).

And before we start, this software is distributed with and by the GPL
License (read 'GNU Public License.txt' that should've been included with
this document) . If you have any comments about this software you can
contact us at:

gdgraph@makko.com.mx

Constructor.

GDGraph(width, height [, title [, red_bg [, green_bg [, blue_bg [,
red_line [, green_line [, blue_line [red_font [, green_font [,
blue_font [, legend [, legend_x [, legend_y [, legend_border [,
transparent_background [, line_thickness]]]]]]]]]]]]]]]]);

Arguments:
width, height (int, int) Image width and height (required).
title (string) Graph title.

Default: blank title
red_bg, green_bg, blue_bg (int, int, int) [0- 255] Red, green and blue

components of graph background.

Default: 255,255,255 (white background)
red_line, green_line,
blue_line

(int, int, int) [0- 255] Red, green and blue
components of all lines.

Default: 0,0,0 (black lines)
red_font, green_font,
blue_font

(int, int, int) [0- 255] Red, green and blue
components of all strings.

Default: 0,0,0 (black font)
legend (boolean) To put a legend or not.

Default: true (legend included)
legend_x, legend_y (int, int) [0- width, 0- height] X and Y legend

position, if a legend is present (0,0 is top left
corner).

file:///Volumes/NIHIL2BACK/balkce/Documents/makko/GDGraph/Documentation/2.1.0/gdgraph@makko.com.mx

Default: Top right corner.
legend_border (boolean) To put a border around the legend.

Default: true (border around legend)
transparent_background (boolean) To make the background

transparent.

Because of the fact that GDGraph uses PNG files to
paint the graphs, and that Internet Explorer doesn't
handle at all transparency in PNGs, this feature
doesn't work on Internet Explorer 6 (it will in IE 7.1).
We won't make it work until Microsoft gets it's act
together and adds this functionality to IE 6.

You're more than welcome to change lines 526 and
527, 839 and 840, and 944 and 945 of gdgraph.php to
the following:

header('Content-type: image/gif');

imagegif($this->image);

which will make GDGraph give a GIF image (instead of
a PNG) with which Internet Explorer can handle
transparency. You can hold Microsoft responsible for
this burden.

Default: false (solid background)
line_thickness (int) X- axis, y- axis, and grid lines thickness.

Default: 1

Bar Graph.
bar_graph(data, [, x_title [, y_title [, bar_width_percentage [,
grid_presence [, bar_border_presence]]]]]);

Returns:
A PNG image with a bar graph of the information contained in data .

Arguments:
data (array) Data from which the graph will be created

(required).

Format:
Array(

'bar1'=>Array(value1,red1,green1,blue1,3d1),
'bar2'=>Array(value2,red2,green2,blue2,3d2),...

);

Where 'bar1' is the name of the first bar, 'value1'
is it's value; 'red1', 'green1', and 'blue1' it's color
components, and 3d1 it's 3D thickness (these last
four can be ommited, but will default to 0).

x_title, y_title (string, string) Graph x axis and y axis title.

Default: blank titles
bar_width_percentage (int) [0- 100] Percentage of the space given to a

certain bar that that bar will occupy.

Default: 90 (90% occupancy)
grid_presence (int) [0- 10] Presence of grid, 0 being none and 10

being a solid line (see Example 2 for further
explanation).

Default: 0 (no grid)
bar_border_presence (boolean) Presence of border around bars.

Default: true (border present)

Example 1:
<?

require_once("gdgraph.php");
$gdg = new GDGraph(500,300,"Sales");
$arr = Array(

'First Trimester' => Array(1000,200,100,1000,50),
'Second Trimester' => Array(1200,200,200,10,20),
'Third Trimester' => Array(-500,23,255,100,15)
);

$gdg->bar_graph($arr); //Line A
?>

Will give out the following image:

Example 2:
If we change Line A to:

$gdg->bar_graph($arr, “$”, “Trimesters”, 20, 5, false); //Line A

It will give out the following image:

Pie Graph.
pie_graph(data, [, pie_fill_percentage [, pieces_labels [,
starting_degree [, outline [, 3D_thickness]]]]]);

Returns:
A PNG image with a pie graph of the information contained in data .

Arguments:
data (array) Data from which the graph will be created

(required).

Format:
Array(

'pie1' => Array(value1,red1,green1,blue1),
'pie2' => Array(value2,red2,green2,blue2),...

);

Where 'pie1' is the name of the first slice, 'value1'
is it's value, and 'red1', 'green1', and 'blue1' it's
color components (these last three can be
ommited, but will default to 0).

All values (value1, value2, etc.) are absolute,
meaning that they don't have to be percentages,
GDGraph will turn them into percentages for you.

pie_fill_percentage (int) [0- 100] Percentage of the image space filled
by the pie graph.

Default: 100 (fill whole image)
pieces_labels (boolean) To put each piece label or not.

Default: true (labels included)
starting_degree (int) The starting point from which the pie will be

drawn.

Default: 0 (horizontal, from the right
clockwise)

outline (boolean) To put the outline around the pie pieces.

Default: true
3D_thickness (array) How thick each piece will be.

Format:
Array(

'pie1' => thick1, 'pie2' => thick2,...

);

Where 'pie1' is the name of the first slice and

'thick1' is it's thicknesss in pixels. If a slice it's
ommited from this array, it's thickness will
default to 0.

Example 1:
<?

require_once("gdgraph.php");
$gdg = new GDGraph(500,300,"Sales");
$arr = Array(

'First Trimester' => Array(1000,200,100,1000),
'Second Trimester' => Array(1200,200,200,10),
'Third Trimester' => Array(500,23,255,100)
);

$gdg->pie_graph($arr); //Line A
?>

Will give out the following image:

Example 2:
If we add the following before the Line A:

$arr_3D = Array(
'First Trimester' => 15,
'Second Trimester' => 0,
'Third Trimester' => 5
);

And change Line A to:

$gdg->pie_graph($arr,90,false,200,false,$arr_3D); //Line A

It will give out the following image:

Line Graph.
line_graph(data, [, colors [, x_labels [, x_title [, y_title [,
paint_dots [, lines_thickness [, x_lower_value [, x_upper_value [,
y_lower_value [, y_upper_value]]]]]]]]]]);

Returns:
A PNG image with a line graph of the information contained in data .

Arguments:
data (array) Data from which the graph will be created

(required).

Format:
Array(

'lin1' => Array(t1,t2,t3,t4,t5,t6,t7,
...),'lin2' => Array(t1,t2,t3,t4,t5,t6,t7,
...),...

);

Where 'lin1' is the name of the first line, and 't1',
't2', 't3', etc. are it's values going through time.
Obviously, all lines must have the same number of
t's, if not, it will only draw until it reaches the end
of that line's t's.

colors (array) Color of each line appearing in the graph.

Format:
Array(

'lin1' => Array(red1,green1,blue1),
'lin2' => Array(red2,green2,blue2),...

);

Where 'lin1' is the name of the first line, and
'red1', 'green1', and 'blue1' it's color components.
Although these can be ommited and will default
to 0, if any line, which is included in data , isn't
included here, it won't also be included in the
legend.

x_labels (array) X axis labels.

Format:
Array('t_label1', 't_label2', ...);

Where all t_label's are the label of each it's
corresponding t in data , counting from left to
right. If these aren't included, no labels will
appear in the x axis.

x_title, y_title (string, string) Graph x axis and y axis title

(optional).

Default: blank titles
paint_dots (boolean) To paint the little squares between each

break of a line.

Default: true
lines_thickness (array) Thickness of each line.

Format:
Array(

'lin1' => thick1, 'lin2' => thick2, ...

);

Where 'lin1' is the name of the first line, and
'thick1' is it's thickness. Any line can be ommited
from this array, but it's thickness will default to 1.

grid_presence (int) [0- 10] Presence of grid, 0 being none and 10
being a solid line (see Example 2 for further
explanation).

Default: 0 (no grid)
x_lower_value,
x_upper_value,
y_lower_value,
y_upper_value

(int) Zoom area. If these values aren't NULL,
GDGraph will substitute it as the lower (or upper)
value in the X or Y axis which the graph will show.
If any of them are NULL, GDGraph will use the
biggest (or lowest) quantity found in the data
array for that specific value. For the X axis values,
no negatives are allowed, and the axis starts at 0.
For further explanation, take a look at Example 3.

Default: NULL (autofit)

Example 1:
<?

require_once("gdgraph.php");
$gdg = new GDGraph(500,300,"Sales");
$arr = Array(

'First Trimester' => Array(1000,2000,-1000,1500),
'Second Trimester' => Array(-1000,0,500,-200),
'Third Trimester' => Array(500,23,255,100)

);
$colors = Array(

'First Trimester' => Array(50,50,50),
'Second Trimester' => Array(250,100,100),
'Third Trimester' => Array(50,255,0)

);
$x_labels = Array('January','February','March','April');
$gdg->line_graph($arr, $colors, $x_labels); //Line A

?>

Will give out the following image:

Example 2:
If we add the following before the Line A:

$thicknesses = Array(
'First Trimester' => 10,
'Second Trimester' => 6,
'Third Trimester' => 3

);

And change Line A to:

$gdg->line_graph($arr, $colors, $x_labels,"Trimesters","$", false,
$thicknesses, 5); //Line A

It will give out the following image:

Example 3:
Change Line A to:

$gdg->line_graph($arr, $colors, $x_labels,"Trimesters","$", false,
$thicknesses, 5, 0, 2, -900, 900); //Line A

It will give out the following image:

