
Porting tips for Windows Store with Unity 1

Porting tips for Windows Store with Unity

This document is evolving constantly with new and updated information. It is still a work in progress.

If you need answers that this document does not address, try the Unity Windows Development

Forum: http://forum.unity3d.com/forums/50-Windows-Development

Contents

Introduction .. 3

Sample Code .. 3

Common tasks ... 3

Getting your app to compile in Unity .. 4

Using the Legacy classes .. 4

Collections .. 5

File storage and IO ... 5

Socket-based networking APIs ... 5

Crypto .. 5

Adding other classes ... 6

3rd Party Plugins .. 6

Reporting progress as your game loads .. 7

App Splash Screen ... 7

Extended Splash Experience .. 7

Orientation Support .. 11

http://forum.unity3d.com/forums/50-Windows-Development

Porting tips for Windows Store with Unity 2

Writing Platform specific code .. 13

Direct Communication .. 13

Use Compiler Directives.. 14

Marshall Unity calls in the Windows Store app .. 14

Keep it simple and leak free .. 15

Windows Store Unity Plugins .. 15

Marshalling calls in a Windows Store plugin .. 17

Plugins or Dependency Injection? ... 18

Plugins ... 18

Dependency Injection ... 18

Graphics Issues... 19

Pausing and resuming your game ... 20

Window Resizing ... 21

Text Input on Windows ... 22

Debugging and Performance Analysis ...24

Debugging your App ..24

The Unity Log File ...24

Performance Analysis ..24

Feedback & Revision history ... 27

Porting tips for Windows Store with Unity 3

Introduction

This write-up provides detailed guidance and coding samples on techniques that will be helpful when

porting your Unity game to the Windows Store.

To get the most out of this document, you should first read the Getting started on Windows Store

with Unity overview; that document presents the context and motivation for some of the tips in this

write-up.

Sample Code

A Sample Unity Project Github Repository, Windows 8.1 solution and Windows Phone 8 solution have

been provided to highlight many of the techniques highlighted in this section.

Common tasks

There are a number of common tasks you will likely encounter while porting your game to the

Windows Store.

 Getting your app to compile in Unity

 Loading your game gracefully

 Orientation Support

 Writing Platform Specific Code

 Graphics Issues

 Pausing and Resuming your Game

 Window Resizing

 Text Input on Windows

 Performance Analysis

We are going to discuss the tasks individually, in a random order influenced by the complexity of the

task, the frequency, and the perceived relevance to you.

http://aka.ms/unityWinStoreStart
http://aka.ms/unityWinStoreStart
http://aka.ms/UnityPortingSamples

Porting tips for Windows Store with Unity 4

Getting your app to compile in Unity

Windows Store apps will run against the .NET Core profile instead of Mono.

.NET Core profile is a subset of the full .NET Framework, therefore, during your port, you will likely run

into a few classes available in Mono (and available in the full version of .NET) that are not in the .NET

core profile subset allowed in Windows Store.

If you are faced with a compiler error inside your Unity code, this will be because

 The class itself is missing e.g. .Hashtable

 There is a method that is missing or has an unsupported overload e.g. .String.Format

When porting, you want to minimize the amount of changes you make to the existing code base so

the recommended approach is to create the missing class with the same name, or create extension

methods with the missing/unsupported method overload. This approach will maintain highest

portability with other platforms; it will minimize risk of introducing new bugs, and be easiest way to

‘rollback’ your workaround when Unity or Microsoft make the types available later.

Using the Legacy classes

The sample project provides legacy class implementations of some older .Net namespaces and

classes. These are referenced using a slightly different namespace to avoid conflicts with the

Mono/.Net assemblies in the Unity editor.

So rather than System.IO, the namespace would be LegacySystem.IO. This means you only have to

change the using directives in your game code to support these classes.

#if UNITY_METRO && !UNITY_EDITOR
 using LegacySystem.IO;

#else
 using System.IO;
#endif

Here is a high level aggregation of the most common missing types, along with suggested

workarounds for dealing with these. The list is not all inclusive.

http://msdn.microsoft.com/en-us/library/vstudio/bb383977.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb383977.aspx

Porting tips for Windows Store with Unity 5

Collections

You will find that a few popular classes in the System.Collections namespace are missing. The missing

types include Hashtable, ArrayList, OrderedDictionary, SortedList, Queue, Stack and a few others.

In the meantime, the sample project in this write-up includes implementations for these. You can find

sources at /UnityPorting/tree/master/PlatformerPlugin/MyPluginUnity/Legacy/System/Collections

File storage and IO

Windows Store has a rich set of File IO APIs, but the programming model is asynchronous and the

namespaces are different, so you will not find a few of the classes in System.IO namespace – the most

frequently missed ones are System.IO.File, System.IO.StreamReader, System.IO.Directory.

Full wrappers for these missing types are not available, but Unity ships two classes (namely File and

Directory) in the UnityEngine.Windows namespace that can help you implement the basic IO

functionality needed for games.

The sample project in this write-up also includes mostly implementations for File and Directory classes

at: /UnityPorting/tree/master/PlatformerPlugin/MyPluginUnity/Legacy/System/IO

If these wrappers do not suffice you can extend further, look at Windows.Storage namespace in

WinRT and also look at the WindowsRuntimeStreamExtensions class that makes it easy to convert

WinRT streams to .NET streams.

Socket-based networking APIs

The networking classes in System.Net are not available on .NET core.

The sample project in this write-up also includes mostly complete implementations for

System.Net.TCPClient using Windows.Networking.Sockets WinRT namespace:

/UnityPorting/tree/master/PlatformerPlugin/MyPluginUnity/Legacy/System/Net

WinRT has new sockets APIs in Windows.Networking namespace and you should be able to extend

on the approach demonstrated in the sample project functionality. There is also the option of looking

at 3rd party solutions such as Photon.

Crypto

Some APIs in System.Cryptography namespace are missing. The most common task when using

Crypto is computing hashes, so Unity provides you with a few small wrappers in UnityEngine.Windows

http://aka.ms/UnityPortingSamples
http://aka.ms/UnityPortingSamples
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.aspx
http://msdn.microsoft.com/en-us/library/system.io.windowsruntimestreamextensions.aspx
http://aka.ms/UnityPortingSamples

Porting tips for Windows Store with Unity 6

for computing MD5 and SHA1 hashes. If these do not suffice, use the Windows.Security.Cryptography

classes.

Adding other classes

The list above is not all-inclusive, but it outlines the most popular missing types and should give you

the right context on amount of work needed to port your game. Look at the sample project to get

familiar with the techniques to implement and include missing functionality without disrupting your

existing code substantially here:

/UnityPorting/tree/master/PlatformerPlugin/MyPluginUnity/Legacy

When implementing replacement classes/methods, you might need to rely on native APIs (available in

Windows Store but not in .NET core) and for this you will need to reference the “Writing Platform

Specific Code” section below which details approaches for communicating between Windows and

Unity.

A good example of this is the System.IO.Directory implementation in the sample project in

/UnityPorting/tree/master/PlatformerPlugin/MyPluginUnity/Legacy/System/IO/Directory.cs

3rd Party Plugins

Besides the core classes covered above, you might need to reference 3rd party plugins. Some of the

popular plugins (such as NGUI or Toolkit2D) have already been ported to work on Windows Store.

Other plugins might not have been ported yet.

If you have plugins that are shipping as source code (such as NGUI), then the compiler will catch most

issues for you. If you have plugins that ship as a binary, you will likely get errors at run-time when you

try to load them or use them. A good way to check if a plug-in is compatible is to run it through the

http://scan.xamarin.com. You can then see if a plugin is compatible with Windows Store APIs.

If your plugin is not compatible, contact the plugin author or email jaimer@microsoft.com and we will

try to contact the author.

Once you have implemented all the missing classes or methods your game should then be able to

compile into a Windows Store app.

http://aka.ms/UnityPortingSamples
http://aka.ms/UnityPortingSamples
http://scan.xamarin.com/
mailto:jaimer@microsoft.com

Porting tips for Windows Store with Unity 7

Reporting progress as your game loads

When your game launches, it’s important to show the user a progress indicator so the user knows

that the game is not frozen or stalled.

In this write up, we will assume you are using a XAML project. If you are not, most of the concepts

here will still apply to a DirectX project, but the implementations will be quite different.

There are 2 key stages to the loading of a game on Windows Store/Windows Phone using Unity

1. App Splash Screen

2. Extended Splash Experience

App Splash Screen

The initial splash screen image will be shown by the OS and you can configure it by updating your

applications manifest as follows:

Extended Splash Experience

Porting tips for Windows Store with Unity 8

Windows will show the initial app splash screen only during the time it takes the OS to load the Page

(written in XAML markup) that will host your Unity scenes.

Usually, the unity scene will take longer to load so what you will want to do is use XAML to show the

same splash image again with a progress indicator on top to the user while your unity scene loads,

this is the extended splash experience.

The Sample Unity Project has a basic example of this. The progress bar is displayed whilst the game

loads along with the splash screen and then when Unity has finished loading, it is removed and the

game appears.

In MainPage.xaml you can see there is a progress bar added alongside the splash screen image.

Note: Make sure the maximum is set to a value which is longer than it takes the game to load on your

slowest device to ensure the progress bar never maxes out. You can also just make the ProgressBar

indeterminate – an indeterminate progress bar shows the animated dots moving around the screen,

but it does not incremental progress.

 <SwapChainBackgroundPanel x:Name="DXSwapChainBackgroundPanel">
 <Grid x:Name="ExtendedSplashGrid">
 <Image x:Name="ExtendedSplashImage" Source="Assets/SplashScreen.png"/>
 <ProgressBar x:Name="SplashProgress" Foreground="#FFFFFFFF"
Background="#FF333333" Maximum="10000" Width="320" Height="25"/>
 </Grid>
 </SwapChainBackgroundPanel>

In MainPage.xaml.cs –the code-behind file for the XAML UI- use the constructor to start a timer which

will make the progress bar tick along providing some visual feedback to the user.

Next, wire up to a delegate in the Unity side called WindowsGateway.UnityLoaded().

WindowsGateway is explained further in the “Writing Platform Specific Code” section below,

Porting tips for Windows Store with Unity 9

essentially it allows you to decide when Unity is finished loading and the user should see the Unity

scene.

When WindowsGateway.UnityLoaded() is fired, we set a private Boolean to say Unity is done loading.

Then the progress bar timer will detect this on its next Tick event and remove the progress bar

gracefully showing the game.

Note: There is also an event called AppCallbacks.Initialized() but this can tend to fire too early. Often

you will want explicit control of the loading experience to inform the app when the game is playable.

Porting tips for Windows Store with Unity 10

 private DispatcherTimer extendedSplashTimer;
 private bool isUnityLoaded;

 public MainPage(SplashScreen splashScreen)
 {
 // ensure we listen to when unity tells us game is ready
 WindowsGateway.UnityLoaded = OnUnityLoaded;

 // create extended splash timer
 extendedSplashTimer = new DispatcherTimer();
 extendedSplashTimer.Interval = TimeSpan.FromMilliseconds(100);
 extendedSplashTimer.Tick += ExtendedSplashTimer_Tick;
 extendedSplashTimer.Start();

 }

 /// <summary>
 /// Control the extended splash experience
 /// </summary>
 async void ExtendedSplashTimer_Tick(object sender, object e)
 {
 var increment = extendedSplashTimer.Interval.TotalMilliseconds;
 if (!isUnityLoaded && SplashProgress.Value <= (SplashProgress.Maximum -
increment))
 {
 SplashProgress.Value += increment;
 }
 else
 {
 SplashProgress.Value = SplashProgress.Maximum;
 await Task.Delay(250); // force delay so user can see progress bar
maxing out very briefly
 RemoveExtendedSplash();
 }
 }

 /// <summary>
 /// Unity has loaded and the game is playable
 /// </summary>
 private async void OnUnityLoaded()
 {
 isUnityLoaded = true;
 }

 /// <summary>
 /// Remove the extended splash
 /// </summary>
 public void RemoveExtendedSplash()
 {
 if (extendedSplashTimer != null)
 {
 extendedSplashTimer.Stop();
 }
 if (DXSwapChainBackgroundPanel.Children.Count > 0)
 {
 DXSwapChainBackgroundPanel.Children.Remove(ExtendedSplashGrid);
 }
 }

Porting tips for Windows Store with Unity 11

Orientation Support

Due the predominantly widescreen aspect ratio on new devices, the Unity editor will export projects

that default to landscape orientation. If your game supports portrait orientation, you will need to

change the app manifest in Visual Studio –you can’t do this in the Unity editor-.

To change the manifest, double click in the Package.appxmanifest file, which you can find on the root

of your Windows Store Visual Studio project. In the manifest editor, just check the orientations you

want to support.

The amount of work you will have to do to support landscape will depend on the game you are

porting. Even if the game has been developed primarily for portrait you may find that relatively minor

adjustments to the camera position within the game, along with changes to on screen menu items

may get you most of the way there.

Starting with Unity 4.3, the orientation APIs (Input.deviceOrientation and screen.orientation) work well

within Unity. You can use these to query the device’s orientation and even set the orientation for

specific scenes.

With the sample project the sample plugin provides an example of this within the WindowsPlugin.cs

class. Your Unity code can then make use of a call to the OrientationChanged handler

http://aka.ms/UnityPortingSamples

Porting tips for Windows Store with Unity 12

 public WindowsPlugin()
 {
#if NETFX_CORE
 Dispatcher.InvokeOnUIThread(() =>
 {
 DisplayInformation.GetForCurrentView().OrientationChanged +=
WindowsPlugin_OrientationChanged;
 });
#endif
 }

 /// <summary>
 /// Will allow Unity to respond to orientation changes
 /// </summary>
 public EventHandler OrientationChanged;

 /// <summary>
 /// Allows Unity to set auto rotation preferences
 /// </summary>
 void SetOrientationPreferences (int value)
 {
#if NETFX_CORE
 Dispatcher.InvokeOnUIThread(() =>
 {
 Windows.Graphics.Display.DisplayProperties.AutoRotationPreferences =
(Windows.Graphics.Display.DisplayOrientations)value;
 });
#endif
 }

 public void Dispose()
 {
#if NETFX_CORE
 Dispatcher.InvokeOnUIThread(() =>
 {
 DisplayInformation.GetForCurrentView().OrientationChanged -=
WindowsPlugin_OrientationChanged;
 });
#endif
 }

#if NETFX_CORE
 void WindowsPlugin_OrientationChanged(DisplayInformation sender, object args)
 {
 var eh = OrientationChanged;
 if (eh != null)
 {
 Dispatcher.InvokeOnAppThread(() =>
 {
 eh(this, null);
 });
 }
 }
#endif

Porting tips for Windows Store with Unity 13

Writing Platform specific code

Porting your code is only part of the task when writing a game. You will also want to use platform

APIs to implement tasks such as in-app purchasing, or settings, etc.

There are several different ways to call platform APIs from within your Unity scripts:

Since we are running .NET on both sides (your Unity scripts and the host process), we can have a

direct connection between the Unity engine and the app. This technique is very simple but it is a little

limited with regards to the types and communications you can expose.

You can create a Unity plugin which affords greater reusability and opens up the types and API you

can reference. This technique requires more up front effort.

We are discussing both of these techniques by example! Within the Unity Sample project you can

find a class at /Assets/Scripts/Windows/WindowsGateway.cs. This class provides communication

between Windows Store and Unity. You will see both the direct approach and the plugin approach.

It’s created as an abstraction between the Unity game code, and all integration with Windows specific

code.

Direct Communication

The direct communication approach is very simple. Within your Unity script, you can create a class

that the host can reference and access.

For example, in WindowsGatweway, we expose an Action (action is a void delegate with no

parameters) like this:

Porting tips for Windows Store with Unity 14

 static WindowsGateway()
 {

#if UNITY_METRO

 // unity now supports handling size changed in 4.3
 UnityEngine.WSA.Application.windowSizeChanged += WindowSizeChanged;

#endif

 // create blank implementations to avoid errors within editor
 UnityLoaded = delegate {};

 }

 /// <summary>
 /// Called from Unity when the app is responsive and ready for play
 /// </summary>
 public static Action UnityLoaded;

And from within our host code in Visual Studio, you can just call the code directly:

// ensure we listen to when unity tells us game is ready
WindowsGateway.UnityLoaded = OnUnityLoaded;

/// <summary>
/// Unity has loaded and the game is playable
/// </summary>
private async void OnUnityLoaded()
{

/* here you can use WinRT APIs that your unity scripts did not know about and
would not have been able to reference. */
}

The technique is simple; and it is mostly “call back driven”. Here are the lower level details you should

understand for the implementation:

Use Compiler Directives

Use #if UNITY_METRO && !UNITY_EDITOR to ensure your gateway classes and any code that makes

use of them is only executed in the context of a Windows Store run.

Note: You can also use UNITY_WINRT to cover both Windows Store and Windows Phone 8 or you

can use UNITY_WP8 for just Windows Phone 8.

Marshall Unity calls in the Windows Store app

Always ensure that when calling into the Unity side, that you marshal back onto the App Thread.

Here’s an example where we are calling back into Unity after the window is resized.

Porting tips for Windows Store with Unity 15

AppCallbacks.Instance.InvokeOnAppThread(() =>
{
 // back to Unity
}, false);

Conversely use, the InvokeOnUIThread() method to call into the Windows Store side and switch from

the Unity app thread to the Windows UI thread. For example, using the Windows Store APIs for in

app purchases will require you to be on the UI thread to avoid exceptions.

AppCallbacks.Instance.InvokeOnUIThread(() =>
{

// UI Thread
}, false);

Keep it simple and leak free

The direct connection between your app and Unity is often used for callbacks. In some instances you

might need an event (multicast delegate) but often you don’t and you can use a simple Func or

Action to get the job done.

You do have to be very cautious about making sure there is no leaks. If your host holds on to a scene,

that can leave a lot of memory behind, so whether you use Func or events, make sure you do not

create a leak.

There are some techniques such as weak references that you can implement if your code is not

straight forward enough to easily release a reference or unsubscribe to an event. We kept it simple in

our sample to illustrate a point.

Windows Store Unity Plugins

A plugin is a binary dll (in .NET called assembly) that you can reference from within your Unity script.

The principle is that a plugin would have platform specific code that you can’t reference directly from

your Unity scripts (since Unity does not reference the WinRT APIs directly) and the plugin can be used

to encapsulate the logic into a reusable component.

Guidance on how to create Windows Store and WP8 plugins for Unity is provided here:

https://docs.unity3d.com/Documentation/Manual/windowsstore-plugins.html

http://docs.unity3d.com/Documentation/Manual/wp8-plugins-guide-csharp.html

An example plugin called “MyPlugin” has been provided as part of the Unity Sample Project solution.

Here, we will walk through the structure and details on how Unity uses the plugins.

There are three plugin related projects alongside the Windows Store app

 MyPluginUnity - .Net 3.5 class library.

https://docs.unity3d.com/Documentation/Manual/windowsstore-plugins.html
http://docs.unity3d.com/Documentation/Manual/wp8-plugins-guide-csharp.html

Porting tips for Windows Store with Unity 16

 MyPluginWindows - Windows 8.1 class library.

 MyPluginWP8 – Windows Phone 8 class library (for Windows Phone 8)

Each of the plugin projects outputs an assembly with the name MyPlugin.dll. Having the same name

is a Unity requirement. After building, the outputs are copied automatically via a post build script to a

predetermined folder structure in Unity as follows:

 /Assets/Plugins/MyPlugin.dll is generated from MyPluginUnity and will be used within the

Unity Editor.

 /Assets/Plugins/Metro/MyPlugin.dll is generated from MyPluginWindows will be added as a

reference to the Windows Store Visual Studio project and used at run-time.

 /Assets/Plugins/WP8 < MyPlugin.dll generated from MyPluginWP8 will be will be added as a

reference to the Windows Store Visual Studio project and used at run-time.

Our sample plugin allows for a ShowShareUI(), which you can find in the

/Assets/Scripts/ShareManager.cs Unity script.

Note that it works for both Windows 8 and Windows Phone 8

/// <summary>
/// Handles Share Integration
/// </summary>
public class ShareManager : MonoBehaviour
{
 void OnGUI()
 {
 if (GUI.Button(new Rect(Screen.width - 120, 20, 100, 20), "Share"))
 {
#if UNITY_WINRT
 MyPlugin.WindowsPlugin.ShowShareUI();
#endif
 }
 }
}

You can inspect the code for each plugin or run the sample and notice the implementations are

different between Windows Phone and Windows 8, yet within our Unity code, it is the same call and a

single code path.

The assembly generated by MyPluginUnity for the editor experience has to expose the same binary

contracts (the same APIs) that your Unity scripts will compose. For the most part, the functions in the

editor dll will be no-ops and do nothing, but they do have to exist for Unity to compile your scripts.

The swap happens later, and without the editor dll, your project will not compile.

Porting tips for Windows Store with Unity 17

Marshalling calls in a Windows Store plugin

You do not have access to AppCallbacks within your plugin, so this means that we have to do some

work to afford marshalling to the UI and Unity App Threads. Fortunately, that work has been done for

you in the sample project.

Within the MyPluginWindows Windows Store plugin project, you will see a class called Dispatcher,

which has a couple of static properties allowing us to get us onto the App and UI Threads.

 /// <summary>
 /// Handles dispatching to the UI and App Threads
 /// </summary>
 public static class Dispatcher
 {
 // needs to be set via the app so we can invoke onto App Thread
 public static Action<Action> InvokeOnAppThread
 { get; set; }

 // needs to be set via the app so we can invoke onto UI Thread
 public static Action<Action> InvokeOnUIThread
 { get; set; }
 }

In order for this to work inside our plugin, we need to set these properties from within our app. The

best place to do this is straight after Unity has initialized in the App.xaml.cs.

Here we set the UIDispatcher and the AppDispatcher to methods which wrap around the existing

marshalling methods of AppCallbacks, allowing the Unity engine to do all the work.

public App()
{

this.InitializeComponent();
appCallbacks = new AppCallbacks(false);
appCallbacks.Initialized += appCallbacks_Initialized;

}

void appCallbacks_Initialized()
{

MyPlugin.Dispatcher.InvokeOnAppThread = InvokeOnAppThread;
MyPlugin.Dispatcher.InvokeOnUIThread = InvokeOnUIThread;

}

public void InvokeOnAppThread(Action callback)
{

appCallbacks.InvokeOnAppThread(() => callback(), false);
}

public void InvokeOnUIThread(Action callback)
{

appCallbacks.InvokeOnUIThread(() => callback(), false);
}

Porting tips for Windows Store with Unity 18

Always ensure that when calling into the Unity side, that you marshal back onto the App Thread.

Here’s an example where we are calling back into Unity within a plugin using the above approach

Dispatcher.InvokeOnAppThread(() =>
{
 // back to Unity
}, false);

Conversely use, the InvokeOnUIThread() to get onto Windows UI thread within our plugin. For

example, raising the Facebook login window in our sample project will require you to be on the UI

thread to avoid exceptions.

Dispatcher.InvokeOnUIThread(() =>
{

// UI Thread
}, false);

Plugins or Dependency Injection?

Both are valid approaches, it’s not usually a case of one over the other all of the time. You are likely to

end up using both depending on the type of app/platform specific code you need to write.

Plugins

 Great for encapsulating reusable platform specific code into binaries.

 Generally for more abstracted scenarios

 They take a little bit more time to setup and maintain

 Recommended way of dealing with platform specific code with Unity

Dependency Injection

 Quicker to understand and implement

 Simply add directly to Unity scripts and app classes

 Supports two-way communication between app and Unity

 Not great re-use, leading to copy and paste approach between projects

Porting tips for Windows Store with Unity 19

Graphics Issues

At the moment of writing (Unity 4.3 release), there are some issues with a few of the built-in shaders

in Unity. The most common issue is that fixed function shaders are not working on Feature Level 9.1.

The majority of shader issues can be detected in the editor by setting the graphics emulation level.

(Unity main menu -> edit -> Graphics Emulation)

When your build target is set to Windows Store App, the graphics emulation level choices are:

 DirectX 11 9.3 (shader model 3)

 DirectX 11 9.1 (shader model 2) No fixed function. This feature level is used for Surface RT first

generation devices, so it is recommended that you support down to this level.

If you write your own shaders, keep in mind that semantics are required on all variables passed

between shader stages.

The example below will create an error:

struct vertOut {

 float4 pos:SV_POSITION;

 float4 scrPos; //ERROR! no semantic

};

The fix is easy:

struct vertOut {

 float4 pos:SV_POSITION;

 float4 scrPos: TEXCOORD0; // <-- FIX! add semantic.

};

The convention is to use TEXCOORD[n] for a general purpose semantic, so that is a good choice if

none has been assigned.

Here are a couple other known issues with shaders:

 Fixed function shaders are not supported for shader model 2.

Unity shaders come in three flavors: surface shaders, vertex and fragment shaders, and fixed

function shaders. Surface shaders are not supported for shader model 2.

 Fog doesn’t work on devices with feature level <9.3>

You need to implement it manually. Unity has shared a sample fog shader at

http://files.unity3d.com/tomas/Metro/Examples/MyCustomFog.shader. There is also a couple

more fog shaders in the sample provided with this write-up. The shaders are at

/UnityPorting/blob/master/Resources/ShaderIssueExamples.unitypackage

http://files.unity3d.com/tomas/Metro/Examples/MyCustomFog.shader

Porting tips for Windows Store with Unity 20

Pausing and resuming your game

In Windows, an application window can be switched out at any time. When this happens you should

ensure your game pauses appropriately. To pause the game loop, call the UnityPause method.

To detect that your game is being sent to the background and a new app is taking the foreground,

use the VisibilityChanged event on the App’s main window.

This is a simplified example which restarts the game when the game is brought to the foreground, in

a real situation you will want to surface a resume menu to allow the user to enter back into the game

gracefully.

Window.Current.VisibilityChanged += OnWindowVisibilityChanged;

private async void OnWindowVisibilityChanged(object sender, VisibilityChangedEventArgs
e)
 {
 if (e.Visible)
 {
 if (AppCallbacks.Instance.IsInitialized())
 AppCallbacks.Instance.UnityPause(0);
 return;
 }
 else
 {
 if (AppCallbacks.Instance.IsInitialized())
 {
 AppCallbacks.Instance.UnityPause(1);
 }
 }

 }

Porting tips for Windows Store with Unity 21

Window Resizing

In Windows 8, applications run in one of 3 windowing modes being Snapped (320px on the side),

Filled (displayed next to a snapped app), or Full (taking up the whole screen).

In Windows 8.1, things are more flexible and your game may run with any width from a minimum of

320px or 500px which you can define in the app manifest. You can learn more about resizing here.

Most games are likely to opt for a 500px minimum width as this will afford maximum playability and it

is also the required one for Windows 8.1 (320 pixels is optional).

When the user changes the width of the window, the recommended practice is to pause the game so

that the user can decide what to do next.

The previous section provides guidance on you to pause and resume your game using the Unity APIs,

so you can use the code, and just detect Window size changes.

Unity 4.3 now supports handling of windowing changes directly within the runtime via the

UnityEngine.WSA namespace. This is demonstrated in our WindowsGateway class as follows:

 static WindowsGateway()
 {

#if UNITY_METRO

 // unity now supports handling size changed in 4.3
 UnityEngine.WSA.Application.windowSizeChanged += WindowSizeChanged;
#endif

 }

#if UNITY_METRO

 /// <summary>
 /// Deal with windows resizing
 /// </summary>
 public static void WindowSizeChanged(int width, int height)
 {
 // TODO deal with window resizing. e.g. if <= 500 implement pause screen
 if (width <= 500)
 {
 SnapModeManager.Instance.Show();
 }
 else
 {
 SnapModeManager.Instance.Hide();
 }
 }

#endif

http://msdn.microsoft.com/en-us/library/windows/apps/bg182890.aspx#one

Porting tips for Windows Store with Unity 22

Text Input on Windows

Windows offers two different ways to enter text input: Users can type using a physical keyboard or

(when using touch) they can use the soft keyboard (also known as Soft Input Panel, or SIP). If you are

coming from a mobile platform like iOS/Android, where keyboards are not prevalent, and your game

might also have a custom version of a soft keyboard.

The Microsoft recommendation is that your game run well with keyboard and mouse, as well as

touch, so you should take input from the keyboard. As you consider this, understand the

permutations you might encounter.

Using your own custom soft keyboard will have no notion of key input, so a user would not be able to

type using keyboard. You could try listening for key strokes, but then you would end up having to

deal with locales, special keys, etc. it is doable but a bit of work.

A different solution would be to let Windows take care of input. The Unity GUI.TextField and

GUI.TextArea APIs support keyboard input when a physical hardware keyboard is present: When the

user taps on a GUI.Text* element, focus is set on that element and physical keyboard input works

great. When the user does not have a physical keyboard, the expected behavior would be that the

user taps on the element using touch or mouse and the soft keyboard would come up, but this is not

the behavior you will see out of the box with a Unity game. Due to restrictions on Windows API, Unity

does not have a way to show the soft keyboard. How can you work around this?

One option, since XAML UI seamlessly composes with your Unity UI, is to use a XAML TextBox and

“overlay” it on your Unity UI. The XAML TextBox will have the right behavior on SIP & hardware

keyboard and it can be styled to seamlessly integrate with your Unity UI – you can change the

background color; you can control if there is a border, and you can control the font (color, size and

family).

If you overlay XAML UI on top of Unity UI, you should take into account if the device is high DPI.

Windows automatically scales high-DPI devices so that the touch targets are still hittable comfortably.

For example, Surface 2 devices have a native resolution of 1920x1080, but this resolution is scaled, and

XAML ends up reporting 1371.4x771.4 of screen real-estate, 1/1.4 scale.

At run-time, you can find out the scale the system is using by inspecting the

Windows.Graphics.Display.DisplayProperties.ResolutionScale property. If the value is Scale100Percent,

then it is a 1:1 ratio, at Scale140Percent, then a XAML unit is going to be 1/1.4 the Unity scale, and at

Scale180Percent, it will be 1/1.8 scale.

With the sample project the sample plugin provides an example of using a TextBox overlay, see the

TextBoxOverlayPlugin.cs class.

If your Unity game has a lot of text, or it just needs input all the time, or positioning the overlay is not

practical, there is an alternate technique to take input; you can create a PeerAutomation element and

http://aka.ms/UnityPortingSamples

Porting tips for Windows Store with Unity 23

attach it to the Swap Chain Panel that Unity is using to draw the scene. There is a (non-Unity) working

sample of this technique in this Windows SDK sample.

Porting tips for Windows Store with Unity 24

Debugging and Performance Analysis

You may hit problems with building your game that require you to dig a little deeper.

This section covers debugging your app, accessing the fully Unity log files and lastly on using the

Unity Profiler to analyze your app’s performance in real time.

Debugging your App

You can use Visual Studio can be used to debug both your app and Unity C# scripts. This can be very

helpful in narrowing down issues.

 Add Unity’s Assembly-CSharp project as follows to your Visual Studio solution

File -> Add > Existing Project, browse to the Unity project folder and select Assembly-

CSharp.csproj file.

 Optionally uncheck Build flag for Assembly-CSharp since it has already been built by Unity.

 Under Project > Properties > Debug, make sure the debugger type is set to Mixed (Managed

and Native).

Now you are free to add breakpoint(s) to your project or Unity script file(s), and hitF5 to build, deploy,

run and debug your app.

Note: If you are using source control, always remember to remove the Unity project before

committing!

The Unity Log File

If debugging doesn't help to resolve your issue it might be useful to examine UnityPlayer.log file. It's

located here <user>\AppData\Local\Packages\<productname>\TempState\UnityPlayer.log and can

be found directly using Windows Explorer. Don't forget to include this file with your bug reports to

Unity.

Performance Analysis

Unfortunately, you will need a second device (PC, Surface RT, Surface Pro etc.) to deploy to, as due to

the way Windows Store apps work, you cannot profile an app running on your local development

machine.

Here’s a quick guide to getting it working with two machines:

Porting tips for Windows Store with Unity 25

 Configure windows firewall on both devices appropriately, in particular make sure that ports

54998 to 55511 are open in the firewall’s outbound rules – these are the ports used by Unity

for remote profiling.

 Ensure that you have the capabilities Private Networks (Client & Server) and Internet (Client &

Server) enabled in your Windows Store App Manifest

 Check the Autoconnect Profiler checkbox when you do the Windows Store build (via File >

Build Settings > Windows Store App).

 Ensure the remote debugger is running on your target machine (and yes, you can run the

remote debugger on your Surface RT)

 Configure your Windows Store project to use remote debugger (via Project Properties >

Debug)

 F5 from your Windows Store project in Visual Studio (run in debug or release, either works,

but be consistent)

 The initial deploy of your app can take a while the first time if you have a large package over

Wi-Fi, then it’s incremental after further changes.

Once deployed Window > Profiler will show you the performance information flowing from your app.

Porting tips for Windows Store with Unity 26

Porting tips for Windows Store with Unity 27

Feedback & Revision history

There is a lot more to cover. Check out the rest of the series and out suggested references.

To let us know what missed or what you want to hear more about, drop an email to

jaimer@microsoft.com.

Revision Date Changes Contributors

1.0 11/15/2013 Seeding this conversation with a big

brain dump. Sharing for comments.

Jaime Rodriguez (Microsoft),

Keith Patton (Marker Metro),

the Marker Metro team.

1.1 12/08/2013 Plugin file reference changes,

renamed direct dependency to

dependency injection which is more

accurate

Jaime Rodriguez (Microsoft),

Keith Patton (Marker Metro),

the Marker Metro team.

1.2 12/20/2013 Formatting & TOC update JC Cimetiere (Microsoft)

mailto:jaimer@microsoft.com
http://www.markermetro.com/2013/11/technical/getting-even-more-games-to-windows-our-partnership-with-microsoft-and-unity/
http://www.markermetro.com/2013/11/technical/getting-even-more-games-to-windows-our-partnership-with-microsoft-and-unity/

